Chapter 9 FRQ Homework

1.

$$f(x) = \begin{cases} \frac{\cos x - 1}{x^2} & \text{for } x \neq 0\\ -\frac{1}{2} & \text{for } x = 0 \end{cases}$$

The function f, defined above, has derivatives of all orders. Let g be the function defined by

$$g(x) = 1 + \int_0^x f(t) dt.$$

- (a) Write the first three nonzero terms and the general term of the Taylor series for cos x about x = 0. Use this series to write the first three nonzero terms and the general term of the Taylor series for f about x = 0.
- (b) Use the Taylor series for f about x = 0 found in part (a) to determine whether f has a relative maximum, relative minimum, or neither at x = 0. Give a reason for your answer.
- (c) Write the fifth-degree Taylor polynomial for g about x = 0.
- (d) The Taylor series for g about x = 0, evaluated at x = 1, is an alternating series with individual terms that decrease in absolute value to 0. Use the third-degree Taylor polynomial for g about x = 0 to estimate the value of g(1). Explain why this estimate differs from the actual value of g(1) by less than 1/6!.

2.

The Maclaurin series for the function f is given by $f(x) = \sum_{n=2}^{\infty} \frac{(-1)^n (2x)^n}{n-1}$ on its interval of convergence.

- (a) Find the interval of convergence for the Maclaurin series of f. Justify your answer.
- (b) Show that y = f(x) is a solution to the differential equation $xy' y = \frac{4x^2}{1 + 2x}$ for |x| < R, where R is the radius of convergence from part (a).

3.

The function f is defined by the power series

$$f(x) = 1 + (x+1) + (x+1)^2 + \dots + (x+1)^n + \dots = \sum_{n=0}^{\infty} (x+1)^n$$

for all real numbers x for which the series converges.

- (a) Find the interval of convergence of the power series for f. Justify your answer.
- (b) The power series above is the Taylor series for f about x = −1. Find the sum of the series for f.
- (c) Let g be the function defined by $g(x) = \int_{-1}^{x} f(t) dt$. Find the value of $g\left(-\frac{1}{2}\right)$, if it exists, or explain why $g\left(-\frac{1}{2}\right)$ cannot be determined.
- (d) Let h be the function defined by $h(x) = f(x^2 1)$. Find the first three nonzero terms and the general term of the Taylor series for h about x = 0, and find the value of $h(\frac{1}{2})$.

Let f be the function given by $f(x) = \frac{2x}{1+x^2}$.

- (a) Write the first four nonzero terms and the general term of the Taylor series for f about x = 0.
- (b) Does the series found in part (a), when evaluated at x = 1, converge to f(1)? Explain why or why not.
- (c) The derivative of $\ln(1+x^2)$ is $\frac{2x}{1+x^2}$. Write the first four nonzero terms of the Taylor series for $\ln(1+x^2)$ about x=0.
- (d) Use the series found in part (c) to find a rational number A such that $\left|A \ln\left(\frac{5}{4}\right)\right| < \frac{1}{100}$. Justify your answer.